Subject	Fuzzy Logic	Course Code	CT430	Theoretical	3hrs / wk
Semester	7	Prerequisite	CT227	Practical	3hrs / wk

Course Discription:

This course introduces the student to intelligent control theory. The course material is divided in two main parts: Fuzzy Logic and Artificial Neural Networks techniques. Emphasize is provided for intelligent control applications of control systems.

	Specific Learning Outcomes	Note	
Week 1	Introduction: History, Background and Applications	Reference 2	
		Chapter 1	
Week 2	Specific Learning Outcomes	Note	
	Review of Classical Control: Math Models, Controller Design, PID Control	Reference 3	
Week 3	Specific Learning Outcomes	Note	
	Fuzzy Sets Basic Definition: Classical Set Theory, Fuzzy Sets, Fuzzy Operations, Properties and Relations	Chapter 8	
Week 4	Specific Learning Outcomes	Note	
	Fuzzy logic: Predicate Logic, Fuzzy Logic, Approximate Reasoning	Chapter 9	
Week 5	Specific Learning Outcomes	Note	
	Fuzzy Control: Fuzzification, Fuzzy Rules	Chapter 10	
Week 6	Specific Learning Outcomes	Note	
	Fuzzy Control: Inference Engine (Mamdani and Larsen), Defuzzification	Chapter 10	
Week 7	Specific Learning Outcomes	Note	
	Fuzzy Control: Fuzzy Control Design, MATLAB	Chapter 10	

	Simulation	
Week 8	Specific Learning Outcomes	Note
	Fuzzy Control Application: Autonomous Robots, HVAC	Chapter 11, Chapter13
Week 9	Specific Learning Outcomes	Note
	Fundamentals of Neural Networks: Definitions/Elements, Single Layer Perceptron	Chapter 2
Week 10	Specific Learning Outcomes	Note
	Fundamentals of Neural Networks: Perceptron Architecture and Algorithm	Chapter 2
Week 11	Specific Learning Outcomes	Note
	Neural Network Architecture: Different Architectures, Backpropagation Algorithm	Chapter 3
Week 12	Specific Learning Outcomes	Note
	Neural Network Architecture: Radial Basis Functions	Chapter 3
Week 13	Specific Learning Outcomes	Lab
	Neural Network Architecture: Self-Organizing Networks, Hopefield Networks	Chapter 3
Week 14	Specific Learning Outcomes	Lab
	Neural Control: Design and Examples, MATLAB Simulation	Reference 4

Course Assessment:

Course Work	Mid-term Tests	Final Examination	Final Exam Practical
10	30	40	20

NOTE: Course Work may include Assignments, Lab reports, Projects and Practical Activities.

Textbooks:

- 2. A First Course in Fuzzy and Neural Control by Nguyen, Prasad, Walker, and Walker. CRC 2003.
- 3. Artificial Intelligence by Negnevisky. Addison-Wesley.
- 4. Automatic Control Systems by Colnaraghi and Kuo. 9th edition. Wiley Publisher. 2010.
- 5. "An Introduction to the use of Neural Networks in Control Systems" white paper by Martin Hagan, Demuth, and De Jesus.
- 6. MATLAB Fuzzy Logic Toolbox: user's guide.
- 7. MATLAB Neural Network Toolbox: user's guide.